

COLD SINTERING OF CERAMIC MATERIALS

Sara Saad and Jing Guo*

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

E-mail: jingguo19@xjtu.edu.cn

ABSTRACT	SIGNIFICANT RESULTS	CONCLUSIONS
Sintering ceramics usually needs a	Microstructures that are more than 90% dense after cold sintering process.	Cold sintering has advantages over
temperature of over 1000°C. To reduce the	There are no visible impurities or second phases.	traditional sintering processes. After
quantity of heat generated, a novel sintering	There are no visible impurities of second phases.	sintering, the materials have a high purity
process has been devised. It may sinter	This experiment shows how to effectively employ mediate liquid phase and pressure to increase the	and dangity

process has been devised. It may sinter oxides, carbonates, bromides, fluorides, chlorides, phosphates and ceramic-based composites.

INTRODUCTION

Ceramics are frequently sintered by firing them at high temperatures - this is known as conventional sintering.

These approaches are hampered by the problem of physical and chemical incompatibility at high temperatures.

The significant benefit of cold sintering is the reduction in temperature and the speeding of the diffusion process through the use of mediate liquid phase and pressure.

ipicy driving force of sintering.

It is revealed that cold sintering process is feasible to fabricate ceramic-ceramic, ceramic-polymer, and ceramic-metal composites.

Sample	Relative density	Pressure	Temperature
$K_2 M o_2 O_7$	95.7%	350 MPa	120 C°
$Na_2Mo_2O_7$	95.7%	350 MPa	120 C°
$Li_2Mo_2O_7$	94.1%	350 MPa	120 C°
V_2O_5	90.2%	350 MPa	120 C°

and density.

A significantly reduced thermal budget reduces energy use.

The benefits of organic and inorganic integration with the ideal combination.

FUTURE WORK

More understanding of the solvent-particle interface chemistry.

A deeper knowledge of the mechanisms and process aspects is required.

REFERENCES

Sintering: A Paradigm Shift for 1. Cold

350 MPa

As a result, many inorganic materials and ceramic-based composites may now be manufactured at far lower temperatures than previously thought possible.

Cold Sintered Composites

Interfaces of cold-sintered ceramics and the

Processing Integration and of Ceramics, Angewandte Chemie International Edition, 55 [38] 11457-11461, 2016.

2. Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials, Advanced Materials, 26 [39] 7115-Functional 7121, 2016

- 3. Cold Sintered Ceramic Nanocomposites of 2D MXene and Zinc Oxide, Advanced Materials, 30, 1801846, 2018
- 4. Cold Sintering: Progress, Challenges and Future Opportunities, Annual Review of Materials Research, 49, 275-295, 2019

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Clive

METHODS

Cold sintering was used to create dense ceramics of Li_2MoO_4 , $Na_2Mo_2O_7$, $K_2Mo_2O_7$, V_2O_5 , and ZnO, as well as dense Li_2MoO_4 -BaFe₁₂O₁₉, composites of Li₂MoO₄-PTFE, V₂O₅-CNF, and ZnO-MXene, et al.

The powders were wetted by aqueous solutions, and then the wet powders were heated pressed with a steel die into dense pellets at 80-600 MPa and 100-300 °C,

Figure 3 The left picture show the NaCl cold sintered sample and the right the conventional sintered sample

