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Convex optimization problem — standard form

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn

I objective and inequality constraints f0, . . . , fm are convex
for all x , y , θ ∈ [0, 1],

fi (θx + (1− θ)y) ≤ θfi (x) + (1− θ)fi (y)

i.e., graphs of fi curve upward
I equality constraints are linear
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Convex optimization problem — conic form

minimize cT x
subject to Ax = b

x ∈ K

with variable x ∈ Rn

I K is convex cone
I x ∈ K is a generalized nonnegativity constraint

I linear objective, equality constraints

I special cases:
I K = Rn

+: linear program (LP)
I K = Sn

+: semidefinite program (SDP)
I the modern canonical form
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How do you solve a convex problem?

I use someone else’s (‘standard’) solver (LP, QP, SOCP, . . . )
I easy, but your problem must be in a standard form
I cost of solver development amortized across many users

I write your own (custom) solver
I lots of work, but can take advantage of special structure

I transform your problem into a standard form, and use a
standard solver

I extends reach of problems solvable by standard solvers

I this talk: methods to formalize and automate last approach
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How can you tell if a problem is convex?

approaches:

I use basic definition, first or second order conditions, e.g.,
∇2f (x) � 0

I via convex calculus: construct f using
I library of basic functions that are convex
I calculus rules or transformations that preserve convexity

Constructive convex analysis 8



Convex functions: Basic examples

I xp (p ≥ 1 or p ≤ 0), −xp (0 ≤ p ≤ 1)
I ex , − log x , x log x
I aT x + b
I xT Px (P � 0)
I ‖x‖ (any norm)
I max(x1, . . . , xn)
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Convex functions: Less basic examples

I xT x/y (y > 0), xT Y−1x (Y � 0)
I log(ex1 + · · ·+ exn )
I − log Φ(x) (Φ is Gaussian CDF)
I log det X−1 (X � 0)
I λmax(X ) (X = XT )
I f (x) = x[1] + · · ·+ x[k] (sum of largest k entries)
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Calculus rules

I nonnegative scaling: f convex, α ≥ 0 =⇒ αf convex

I sum: f , g convex =⇒ f + g convex

I affine composition: f convex =⇒ f (Ax + b) convex

I pointwise maximum: f1, . . . , fm convex =⇒ maxi fi (x) convex

I partial minimization: f (x , y) convex =⇒ infy f (x , y) convex

I composition: h convex increasing, f convex =⇒ h(f (x)) convex
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A general composition rule

h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or
I h is decreasing in argument i , and fi is concave, or
I fi is affine

I there’s a similar rule for concave compositions
I this one rule subsumes most of the others
I in turn, it can be derived from the partial minimization rule

Constructive convex analysis 12



Constructive convexity verification

I start with function given as expression
I build parse tree for expression

I leaves are variables or constants/parameters
I nodes are functions of children, following general rule

I tag each subexpression as convex, concave, affine, constant
I variation: tag subexpression signs, use for monotonicity

e.g., (·)2 is increasing if its argument is nonnegative
I sufficient (but not necessary) for convexity

Constructive convex analysis 13



Example

for x < 1, y < 1
(x − y)2

1−max(x , y)
is convex

I (leaves) x , y , and 1 are affine expressions
I max(x , y) is convex; x − y is affine
I 1−max(x , y) is concave
I function u2/v is convex, monotone decreasing in v for v > 0

hence, convex with u = x − y , v = 1−max(x , y)
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Example
analyzed by dcp.stanford.edu (Diamond 2014)
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Disciplined convex programming (DCP)

I framework for describing convex optimization problems
I based on constructive convex analysis
I sufficient but not necessary for convexity
I basis for several domain specific languages and tools for

convex optimization
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Disciplined convex program: Structure

a DCP has

I zero or one objective, with form
I minimize {scalar convex expression} or
I maximize {scalar concave expression}

I zero or more constraints, with form
I {convex expression} <= {concave expression} or
I {concave expression} >= {convex expression} or
I {affine expression} == {affine expression}
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Disciplined convex program: Expressions

I expressions formed from
I variables,
I constants/parameters,
I and functions from a library

I library functions have known convexity, monotonicity, and
sign properties

I all subexpressions match general composition rule
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Disciplined convex program

I a valid DCP is
I convex-by-construction (cf. posterior convexity analysis)
I ‘syntactically’ convex (can be checked ‘locally’)

I convexity depends only on attributes of library functions,
and not their meanings

I e.g., could swap
√
· and 4

√
·, or exp · and (·)+, since their

attributes match
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Cone representation

(Nesterov, Nemirovsky)
cone representation of (convex) function f :

I f (x) is optimal value of cone program

minimize cT x + dT y + e

subject to A
[

x
y

]
= b,

[
x
y

]
∈ K

I cone program in (x , y), we but minimize only over y
I i.e., we define f by partial minimization of cone program
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Examples

I f (x) = −(xy)1/2 is optimal value of SDP

minimize −t

subject to
[

x t
t y

]
� 0

with variable t
I f (x) = x[1] + · · ·+ x[k] is optimal value of LP

minimize 1Tλ− kν
subject to x + ν1 = λ− µ

λ � 0, µ � 0

with variables λ, µ, ν
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SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

I xp, p ≥ 1 rational
I −(det X )1/n

I
∑k

i=1 λi (X ) (X = XT )
I ‖X‖ = σ1(X ) (X ∈ Rm×n)
I ‖X‖∗ =

∑
i σi (X ) (X ∈ Rm×n)

some of these representations are not obvious . . .
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Canonicalization

I start with problem in DCP form, with cone representable
library functions

I automatically transform to equivalent cone program
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Canonicalization: How it’s done

I for each (non-affine) library function f (x) appearing in
parse tree, with cone representation

minimize cT x + dT y + e

subject to A
[

x
y

]
= b,

[
x
y

]
∈ K

I add new variable y , and constraints above
I replace f (x) with affine expression cT x + dT y + e

I yields problem with linear equality and cone constaints
I DCP ensures equivalence of resulting cone program
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Example

I constrained least-squares problem with `1 regularization

minimize ‖Ax − b‖22 + γ‖x‖1
subject to ‖x‖∞ ≤ 1

I variable x ∈ Rn

I constants/parameters A, b, γ > 0
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CVX

I developed by M. Grant
I embedded in Matlab; targets multiple cone solvers

I CVX specification for example problem:

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1

cvx_end

I here A, b, γ are constants
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Some functions in the CVX library

function meaning attributes
norm(x, p) ‖x‖p, p ≥ 1 cvx
square(x) x2 cvx
square_pos(x) (x+)2 cvx, nondecr
pos(x) x+ cvx, nondecr
sum_largest(x,k) x[1] + · · ·+ x[k] cvx, nondecr
sqrt(x)

√
x , x ≥ 0 ccv, nondecr

inv_pos(x) 1/x , x > 0 cvx, nonincr
max(x) max{x1, . . . , xn} cvx, nondecr
quad_over_lin(x,y) x2/y , y > 0 cvx, nonincr in y
lambda_max(X) λmax(X ), X = X T cvx

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx

Modeling frameworks 30



CVXPY

I developed by S. Diamond
I embedded in Python; targets multiple cone solvers

I CVXPY specification for example problem:

from cvxpy import *
x = Variable(n)
cost = sum_squares(A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)
constr = [norm(x,"inf") <= 1]
prob = Problem(obj,constr)
opt_val = prob.solve()
solution = x.value
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Parameters in CVXPY

I symbolic representations of constants
I can specify sign
I change value of constant without re-parsing problem

I computing a trade-off curve for example problem:

x_values = []
for val in numpy.logspace(-4, 2, num=100):

gamma.value = val
prob.solve()
x_values.append(x.value)
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Signed DCP in CVXPY

function meaning attributes

norm(x, p) ‖x‖p, p ≥ 1 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

square(x) x2 cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0

huber(x)

{
x2, |x | ≤ 1
2|x | − 1, |x | > 1

cvx, nondecr for x ≥ 0,
nonincr for x ≤ 0
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Conclusions

I DCP is a formalization of constructive convex analysis
I simple method to certify problem as convex
I basis of several domain specific languages for convex

optimization

I modeling frameworks make rapid prototyping easy

Conclusions 35



References

I Disciplined Convex Programming (Grant, Boyd, Ye)
I Graph Implementations for Nonsmooth Convex Programs

(Grant, Boyd)

I CVX (Grant, Boyd)
I CVXPY (Diamond, Boyd)

Conclusions 36


	Convex optimization
	Constructive convex analysis
	Cone representation
	Canonicalization
	Modeling frameworks
	Conclusions

