Domain Specific Languages for Convex Optimization

Stephen Boyd

joint work with M. Grant, S. Diamond Electrical Engineering Department, Stanford University

Institute for Advanced Study, City University of Hong Kong September 12 2017

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Convex optimization problem — standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

▶ objective and inequality constraints $f_0, ..., f_m$ are convex for all $x, y, \theta \in [0, 1]$,

$$f_i(\theta x + (1-\theta)y) \le \theta f_i(x) + (1-\theta)f_i(y)$$

i.e., graphs of f_i curve upward

equality constraints are linear

Convex optimization problem — conic form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K}$

with variable $x \in \mathbf{R}^n$

- $\triangleright \mathcal{K}$ is convex cone
 - $x \in \mathcal{K}$ is a generalized nonnegativity constraint
- linear objective, equality constraints
- special cases:
 - $ightharpoonup \mathcal{K} = \mathbf{R}_{+}^{n}$: linear program (LP)
 - $\mathcal{K} = \mathbf{S}_{+}^{n}$: semidefinite program (SDP)
- ▶ the modern canonical form

How do you solve a convex problem?

- ▶ use someone else's ('standard') solver (LP, QP, SOCP, ...)
 - easy, but your problem **must** be in a standard form
 - cost of solver development amortized across many users
- write your own (custom) solver
 - ▶ lots of work, but can take advantage of special structure
- transform your problem into a standard form, and use a standard solver
 - extends reach of problems solvable by standard solvers
- ▶ this talk: methods to formalize and automate last approach

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

How can you tell if a problem is convex?

approaches:

- ▶ use basic definition, first or second order conditions, *e.g.*, $\nabla^2 f(x) \succeq 0$
- ▶ via convex calculus: construct f using
 - ▶ library of basic functions that are convex
 - calculus rules or transformations that preserve convexity

Convex functions: Basic examples

- $x^p \ (p \ge 1 \text{ or } p \le 0), -x^p \ (0 \le p \le 1)$
- $ightharpoonup e^x$, $-\log x$, $x\log x$
- $\triangleright a^T x + b$
- $\rightarrow x^T P x (P \succeq 0)$
- ▶ ||x|| (any norm)
- $ightharpoonup \max(x_1,\ldots,x_n)$

Convex functions: Less basic examples

$$x^T x/y \ (y > 0), \ x^T Y^{-1} x \ (Y > 0)$$

- ▶ $-\log \Phi(x)$ (Φ is Gaussian CDF)
- $\lambda_{\max}(X) (X = X^T)$
- ▶ $f(x) = x_{[1]} + \cdots + x_{[k]}$ (sum of largest k entries)

Calculus rules

- ▶ nonnegative scaling: f convex, $\alpha \ge 0 \implies \alpha f$ convex
- **sum**: f, g convex $\implies f + g$ convex
- ▶ affine composition: f convex $\implies f(Ax + b)$ convex
- **pointwise maximum**: f_1, \ldots, f_m convex \implies max_i $f_i(x)$ convex
- **partial minimization**: f(x,y) convex \implies inf_y f(x,y) convex
- **composition**: h convex increasing, f convex $\Longrightarrow h(f(x))$ convex

A general composition rule

 $h(f_1(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- \blacktriangleright h is increasing in argument i, and f_i is convex, or
- \blacktriangleright h is decreasing in argument i, and f_i is concave, or
- $ightharpoonup f_i$ is affine

- there's a similar rule for concave compositions
- this one rule subsumes most of the others
- ▶ in turn, it can be derived from the partial minimization rule

Constructive convexity verification

- start with function given as expression
- build parse tree for expression
 - ▶ leaves are variables or constants/parameters
 - nodes are functions of children, following general rule
- ▶ tag each subexpression as convex, concave, affine, constant
 - ▶ variation: tag subexpression signs, use for monotonicity e.g., $(\cdot)^2$ is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity

Example

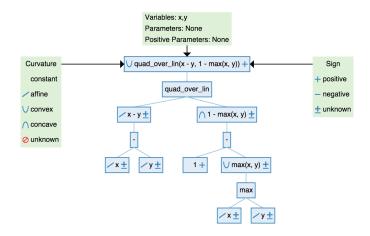
for
$$x < 1$$
, $y < 1$
$$\frac{(x-y)^2}{1-\max(x,y)}$$

is convex

- \blacktriangleright (leaves) x, y, and 1 are affine expressions
- $ightharpoonup \max(x,y)$ is convex; x-y is affine
- ▶ $1 \max(x, y)$ is concave
- function u^2/v is convex, monotone decreasing in v for v>0 hence, convex with u=x-y, $v=1-\max(x,y)$

Example

analyzed by dcp.stanford.edu (Diamond 2014)



Disciplined convex programming (DCP)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization

Disciplined convex program: Structure

- a DCP has
 - ▶ zero or one **objective**, with form
 - minimize {scalar convex expression} or
 - maximize {scalar concave expression}
 - zero or more constraints, with form
 - ► {convex expression} <= {concave expression} or
 - fconcave expression} >= {convex expression} or
 - ▶ {affine expression} == {affine expression}

Disciplined convex program: Expressions

- expressions formed from
 - variables.
 - constants/parameters,
 - and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- ▶ all subexpressions match general composition rule

Disciplined convex program

- a valid DCP is
 - convex-by-construction (cf. posterior convexity analysis)
 - 'syntactically' convex (can be checked 'locally')
- convexity depends only on attributes of library functions, and not their meanings
 - ▶ e.g., could swap $\sqrt{\cdot}$ and $\sqrt[4]{\cdot}$, or exp· and $(\cdot)_+$, since their attributes match

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Cone representation

(*Nesterov, Nemirovsky*) **cone representation** of (convex) function *f*:

• f(x) is optimal value of cone program

minimize
$$c^T x + d^T y + e$$

subject to $A \begin{bmatrix} x \\ y \end{bmatrix} = b, \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{K}$

- ightharpoonup cone program in (x, y), we but minimize only over y
- ▶ *i.e.*, we define *f* by partial minimization of cone program

Examples

• $f(x) = -(xy)^{1/2}$ is optimal value of SDP

minimize
$$-t$$
 subject to $\begin{bmatrix} x & t \\ t & y \end{bmatrix} \succeq 0$

with variable t

• $f(x) = x_{[1]} + \cdots + x_{[k]}$ is optimal value of LP

minimize
$$\mathbf{1}^T \lambda - k \nu$$

subject to $x + \nu \mathbf{1} = \lambda - \mu$
 $\lambda \succeq 0, \quad \mu \succeq 0$

with variables λ , μ , ν

SDP representations

Nesterov, Nemirovsky, and others have worked out SDP representations for many functions, *e.g.*,

- \triangleright x^p , $p \ge 1$ rational
- ▶ $-(\det X)^{1/n}$
- $\blacktriangleright \sum_{i=1}^k \lambda_i(X) (X = X^T)$
- $||X|| = \sigma_1(X) \ (X \in \mathbf{R}^{m \times n})$
- $\|X\|_* = \sum_i \sigma_i(X) \ (X \in \mathbf{R}^{m \times n})$

some of these representations are not obvious . . .

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Canonicalization 24

Canonicalization

- ► start with problem in DCP form, with cone representable library functions
- ▶ automatically transform to equivalent cone program

Canonicalization 25

Canonicalization: How it's done

▶ for each (non-affine) library function f(x) appearing in parse tree, with cone representation

minimize
$$c^T x + d^T y + e$$

subject to $A \begin{bmatrix} x \\ y \end{bmatrix} = b, \begin{bmatrix} x \\ y \end{bmatrix} \in \mathcal{K}$

- add new variable y, and constraints above
- replace f(x) with affine expression $c^Tx + d^Ty + e$
- yields problem with linear equality and cone constaints
- ▶ DCP ensures equivalence of resulting cone program

Canonicalization 26

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Example

lacktriangle constrained least-squares problem with ℓ_1 regularization

- ▶ variable $x \in \mathbf{R}^n$
- constants/parameters A, b, $\gamma > 0$

CVX

- developed by M. Grant
- embedded in Matlab; targets multiple cone solvers
- CVX specification for example problem:

▶ here A, b, γ are constants

Some functions in the CVX library

function	meaning	attributes
norm(x, p)	$ x _p$, $p \ge 1$	cvx
square(x)	x^2	cvx
square_pos(x)	$(x_{+})^{2}$	cvx, nondecr
pos(x)	x_{+}	cvx, nondecr
<pre>sum_largest(x,k)</pre>	$x_{[1]} + \cdots + x_{[k]}$	cvx, nondecr
sqrt(x)	\sqrt{x} , $x \ge 0$	ccv, nondecr
inv_pos(x)	1/x, x > 0	cvx, nonincr
max(x)	$\max\{x_1,\ldots,x_n\}$	cvx, nondecr
<pre>quad_over_lin(x,y)</pre>	$x^2/y, y > 0$	cvx, nonincr in y
<pre>lambda_max(X)</pre>	$\lambda_{\max}(X), X = X^T$	cvx
huber(x)	$\left \begin{array}{ll} \left\{ \begin{array}{ll} x^2, & x \le 1 \\ 2 x -1, & x > 1 \end{array} \right. \right.$	cvx

CVXPY

- developed by S. Diamond
- embedded in Python; targets multiple cone solvers
- CVXPY specification for example problem:

```
from cvxpy import *
x = Variable(n)
cost = sum_squares(A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)
constr = [norm(x,"inf") <= 1]
prob = Problem(obj,constr)
opt_val = prob.solve()
solution = x.value</pre>
```

Parameters in CVXPY

- symbolic representations of constants
- ► can specify sign
- change value of constant without re-parsing problem
- computing a trade-off curve for example problem:

```
x_values = []
for val in numpy.logspace(-4, 2, num=100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```

Signed DCP in CVXPY

function	meaning	attributes
norm(x, p)	v n > 1	cvx, nondecr for $x \ge 0$,
	$ X p, p \leq 1$	nonincr for $x \leq 0$
square(x)	, ₂	cvx, nondecr for $x \ge 0$,
		nonincr for $x \leq 0$
huber(x)	$\int x^2, \qquad x \le 1$	cvx, nondecr for $x \ge 0$,
	$\left \begin{array}{ll} \left\{ \begin{array}{ll} x^2, & x \leq 1 \\ 2 x -1, & x > 1 \end{array} \right. \right.$	nonincr for $x \le 0$

Outline

Convex optimization

Constructive convex analysis

Cone representation

Canonicalization

Modeling frameworks

Conclusions

Conclusions

- ▶ DCP is a formalization of constructive convex analysis
 - simple method to certify problem as convex
 - basis of several domain specific languages for convex optimization

modeling frameworks make rapid prototyping easy

References

- ► Disciplined Convex Programming (Grant, Boyd, Ye)
- ► Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- CVX (Grant, Boyd)
- ► CVXPY (Diamond, Boyd)